8th Grade Module 7 – Introduction to Irrational Numbers Using Geometry

	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	0 - No Evidence
Topic A and B (8.NS.1, 8.NS.2, 8.EE.2)		Identify numbers as being rational or irrational	Identify numbers as being rational or irrational	Identify numbers as being rational or irrational	
	Meets <u>all</u> of the criteria in a Level 3 Completes tasks including synthesis	Approximate irrational numbers to compare the size of numbers and locate them on a number line. Find the decimal expansion of a rational number to identify a number is rational <u>and</u> convert a decimal expansion into a rational number Solve equations where the unknown is a positive number	Approximate irrational numbers to compare the size of numbers Find the decimal expansion of a rational number to identify a number is rational <u>or</u> convert a decimal expansion into a rational number Solve equations where the unknown is a positive number that is squared <u>or cubed</u>	Solve equations where the unknown is a positive number <u></u> <u>that is squared</u>	Shows no evidence
Topic C (8.G.6, 8.G.7, 8.G.8)		Apply the Pythagorean Theorem to determine unknown side	Apply the Pythagorean Theorem to determine unknown side	Apply the Pythagorean Theorem to determine unknown side	Little evidence of reasoning or
	and evaluation	world problems and find the distance between two points in the the coordinate system.	in the coordinate system.	in right triangles in mathematical problems <u>or</u> find the distance between two points in the coordinate system.	the problem.
		Explain a proof of the Pythagorean Theorem <u>and</u> its converse.	Explain a proof of the Pythagorean Theorem or its converse		
Topic D (8.G.9, 8.G.7)		Apply the the volume formulas for cones, cylinders, and spheres to solve real world problems (situations may involve Pythagorean theorem)	Use the volume formulas for cones, cylinders, and spheres to solve mathematical problems (situations may involve Pythagorean theorem)	Use the volume formulas for cones, cylinders, and spheres <u>(2 of</u> <u>the 3)</u> to solve mathematical problems (situations may involve Pythagorean theorem)	

8.NS.A.1 - Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

8.NS.A.2 - Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}).

8.EE.A.2 - Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.

8.G.B.6 - Explain a proof of the Pythagorean Theorem and its converse.

8.G.B.7 - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

8.G.B.8 - Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

8.G.C.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.